Intestinal microecology and quality of life in irritable bowel syndrome patients

Jian-Min Si, Yu-Jing Fan, Shu-Jie Chen

AIM: It has been noticed that gastroenteritis or dysentery plays a role in pathogenesis of irritable bowel syndrome (IBS), and antibiotics can increase functional abdominal symptoms, both of which may be partly due to intestinal flora disorders. This study was to determine the change of gut flora of IBS, a cluster of abdominal symptoms. Because of the chronic course and frequent occurrence of the disease, IBS patients suffered much from it. So the quality of life (QoL) of IBS patients was also evaluated in this study.

METHODS: Twenty-five Rome II criteria-positive IBS patients were recruited, and 25 age and gender-matched healthy volunteers were accepted as control. The fecal flora, including Lactobacillus, Bifidobacterium, Bacteroides, C. perfringens Enterobacteriacea and Enterococcus, were analyzed quantitatively and qualitatively. We also calculated the ratio of Bifidobacterium to Enterobacteriacea (B/E ratio) in both IBS patients and controls. In both groups, the data were further analyzed based on age difference, and comparisons were made between the younger and elder subgroups. We also evaluated the quality of life (QoL) of IBS patients and the control group using the Chinese version of SF-36 health questionnaire.

RESULTS: In IBS patients, the number of fecal Bifidobacterium was significantly decreased and that of Enterobacteriacea was significantly increased compared with that in healthy controls (both \(P < 0.05 \)). The mean microbial colonization resistance (CR) of the bowel in IBS patients was smaller than 1, making a significant difference compared with that in control which was more than 1 (\(P < 0.01 \)). There was no significant difference in gut flora between two subgroups. While in control, the elder subgroup presented more Enterobacteriacea than the younger one (\(P < 0.05 \)). Compared with the control group, IBS patients had significantly lower QoL, however, the impairment is not caused directly by enteric symptoms.

CONCLUSION: There are intestinal flora disorders in IBS patients, which may be involved in triggering the IBS-like symptoms. IBS patients experience significant impairment in QoL, however, the impairment is not caused directly by enteric symptoms.
jar. After 1 g fresh stool was aseptically quantified and homogenized, then diluted with an anaerobic solution in an anaerobic chamber (decimal dilutions up to 10⁻³ were prepared). Fifty µL of serial dilution volume (10⁻¹, 10⁻², 10⁻³, 10⁻⁴) of the specimens was spread over the above agar media with a L-shape stick. Aerobic bacteria were cultivated at 37 °C in an incubator for 48 h and anaerobic bacteria were cultivated in glove box (800 mL/L nitrogen, 100 mL/L hydrogen, and 100 mL/L carbon dioxide) at 37 °C for 48-72 h. After incubation, morphologically distinct colonies were described, calculated, isolated, and identified by morphology, Gram reaction and API fermentation tests, etc. The results were expressed as log₁₀ of the number of bacteria per gram wet weight of feces (colony forming units/g, CFU/g). In our study, 2×10⁵(CFU) were set as the lowest detection limit. The incidence of each bacterial group recorded as the percentage of each bacterial group relative to the total bacteria was calculated. Furthermore, the ratio of Bifidobacterium to Enterobacteriaceae (B/E ratio) was calculated as the microbial colonization resistance (CR) of the bowel according to literature⁹.

Evaluation of enteric symptoms

IBS patients were evaluated by enteric symptom questionnaire⁹ which included 6 scales concerning abdominal pain, mucous stool and distention, etc (Table 1). Each scale was scored as “0” to “3” according to the severity and frequency of symptoms, whereas a higher score meant a more severe and frequent occurrence. The sum of each score was regarded as the general assessment of enteric symptoms.

Assessment of quality of life

The quality of life (QoL) of IBS patients and controls was evaluated with the Chinese version of short form 36 (SF-36) established by Wang et al.¹⁰, which included 8 multiple dimensions as physical functioning (PF), role physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role emotional (RE) and mental health (MH). Scores were calculated according to corresponding formula and rules. Each dimension was scored from 0 to 100, with higher scores indicating better QoL.

Statistical analysis

Quantitative data were compared using different t test according to different situations, with the results expressed as mean±SD. The detection frequency was analyzed by Chi-squares test. The correlation between enteric symptom scores and QoL in IBS patients was detected by Pearson’s correlation analysis. A P value less than 0.05 was considered statistically significant. All analysis was conducted using SPSS10.0 statistical passage.

RESULTS

Gut flora and microbial colonization resistance and detection frequency

Compared with the control group, IBS patients showed a significant decrease in Bifidobacterium but an increase in Enterobacteria (both P<0.05). The mean microbial colonization resistance (CR) of the bowel in IBS patients was smaller than 1, which was significantly different from that in control (P<0.01). There were no significant differences in Lactobaccilus, Bacteroides, Enterococcus between two groups. The detection frequency of C. perfringens in IBS group was much lower than that in the control group (P<0.01, Table 2).

Table 2 Number of bacteria and B/E value in two groups (mean±SD, LgN/g stool)

<table>
<thead>
<tr>
<th>Bacteria (%)</th>
<th>IBS patients (n=25)</th>
<th>Controls(n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobaccilus</td>
<td>6.79±1.73 (92)</td>
<td>6.79±1.94 (84)</td>
</tr>
<tr>
<td>Bifidobacteria*</td>
<td>8.14±2.14 (96)</td>
<td>9.32±1.22 (100)</td>
</tr>
<tr>
<td>Bacteroides</td>
<td>10.49±0.56 (100)</td>
<td>10.62±0.79 (100)</td>
</tr>
<tr>
<td>C. perfringens</td>
<td>7.32±2.12 (40)</td>
<td>6.66±1.68 (80)</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>7.96±1.53 (100)</td>
<td>7.49±1.29 (100)</td>
</tr>
<tr>
<td>Enterobacteriaceae*</td>
<td>9.05±1.04 (100)</td>
<td>8.44±0.95 (100)</td>
</tr>
<tr>
<td>B/E value</td>
<td>0.91±0.27 (96)</td>
<td>1.12±0.23 (100)</td>
</tr>
</tbody>
</table>

The data in the bracket mean positive rate (This is applicable for the following tables including flora.), xP<0.05 flora vs control, xP<0.01 B/E value vs control, xP<0.01 detection frequency vs control.

The data were further analyzed based on age difference. Both groups were sorted on ascending order, the first 12 persons were chosen as younger subgroup (mean age 36.25±5.17) and the rest 13 (mean age 53.85±6.14) as elder one. We found that in IBS group, there was no significant difference in gut flora between two subgroups, but CR was smaller than 1 in both subgroups. While in control, the elder subgroup presented more Enterobacteriaceae than the younger subgroup (P<0.05), but smaller CR (Tables 3, 4).

Table 3 Number of bacteria and B/ E value in younger subgroup and elder subgroup in IBS group (mean±SD, LgN/g stool)

<table>
<thead>
<tr>
<th>Bacteria (%)</th>
<th>Younger subgroup (n=12)</th>
<th>Elder subgroup (n=13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobaccilus</td>
<td>6.63±1.83 (100)</td>
<td>6.98±1.70 (84)</td>
</tr>
<tr>
<td>Bifidobacteria*</td>
<td>7.60±2.65 (100)</td>
<td>8.68±1.38 (92)</td>
</tr>
<tr>
<td>Bacteroides</td>
<td>10.52±0.42 (100)</td>
<td>10.47±0.72 (100)</td>
</tr>
<tr>
<td>C. perfringens</td>
<td>8.84±1.07 (25)</td>
<td>6.89±2.20 (54)</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>8.26±1.58 (100)</td>
<td>7.69±1.50 (100)</td>
</tr>
<tr>
<td>Enterobacteriaceae*</td>
<td>9.16±1.22 (100)</td>
<td>8.90±0.68 (100)</td>
</tr>
<tr>
<td>B/E value</td>
<td>0.85±0.33 (100)</td>
<td>0.98±0.19 (92)</td>
</tr>
</tbody>
</table>

QoL of IBS patients

IBS patients experienced significant impairment in QoL (Table 5). Compared with control group, IBS patients had significantly lower scores on all SF-36 scales, with the exception of physical functioning. Decrements in QoL were most pronounced in general health (GH, mean score 41.40), role physical (RP, mean score 52.00) and vitality (VT, mean score 53.40). Others like mental health (MH), role emotional (RE), bodily pain (BP) and social functioning (SF) were also impaired.

Table 1 Enteric symptom scales

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of abdominal pain (h/d)</td>
<td>None</td>
<td><1</td>
<td>2-8</td>
<td>>8</td>
</tr>
<tr>
<td>Frequency of abdominal pain (d/ wk)</td>
<td>None</td>
<td>1-2</td>
<td>3-5</td>
<td>6-7</td>
</tr>
<tr>
<td>Ratio of abnormal shape of stool</td>
<td>None</td>
<td><1/ 4</td>
<td>1/ 4-3/ 4</td>
<td>>3/ 4</td>
</tr>
<tr>
<td>Ratio of abnormal passage of defecation</td>
<td>None</td>
<td><1/ 4</td>
<td>1/ 4-3/ 4</td>
<td>>3/ 4</td>
</tr>
<tr>
<td>Ratio of mucous stool</td>
<td>None</td>
<td><1/ 4</td>
<td>1/ 4-3/ 4</td>
<td>>3/ 4</td>
</tr>
<tr>
<td>Distention or gastrectasia when defecation</td>
<td>None</td>
<td><1/ 4</td>
<td>1/ 4-3/ 4</td>
<td>>3/ 4</td>
</tr>
</tbody>
</table>
DISCUSSION

The etiology of IBS is still unclear and the pathogenetic mechanisms are only partly understood. Intestinal motility alteration, visceral hypersensitivity, disturbed intestinal reflexes, psychological disorders, food intolerance and gastrointestinal infection and imbalance of gut flora were involved in the pathogenesis of IBS\[11\]. IBS patients presented various intestinal motility alterations, which were recognized as the basic pathophysiological factor. Evidences have shown that there were gasroparesis and small bowel dysmotility in IBS\[12\]. The motility index (MI), mean number and peak amplitude of high amplitude propagating contractions (HAPCs) in IBS patients were significantly greater than those in controls. These abnormalities might be related to shortened colonic transit time\[13\].

The migrating motor complex (MMC) was found to be an important mechanism controlling bacterial growth in the upper small bowel. Its disruption could promote duodenal bacterial overgrowth and bacterial translocation\[14\].

Food-related microbial alteration of the bowel might be partly responsible for the occurrence of IBS, since many IBS symptoms might be triggered or aggravated by food intake\[15\]. King and his colleagues found that colonic-gas production, particularly hydrogen, was greater in IBS patients, and both symptoms and gas production were reduced by an exclusion diet. This reduction might be associated with alterations in the activity of hydrogen-consuming bacteria\[16\]. It has been shown that IBS patients have abnormal lactulose breath test (LBT), suggesting the presence of small intestinal bacterial overgrowth (SIBO) or an increased number of enteric organisms. Normalization of LBT could lead to a significant reduction in IBS symptoms\[17\].

On the other hand, some studies reported that the incidence of IBS was increased after acute gastroenteritis or dysentery. Under the circumstance of infection, an alterant microbiological environment might influence the number of lymphocytes, mast cells and enteroenocidive cells in the mucosa, rapid transit and a tendency to a secretory state was often found\[18\].

In this study, we found that IBS patients had a decrease of beneficial *Bifidobacteria* and overgrowth of potentially pathogenic *Enterobacteriaceae*. The ratio of B/E was smaller than 1, suggesting impairment of microbial colonization resistance (CR) of the bowel in IBS. Once CR was destroyed by antibiotics or other reasons, bacterial infection or dysbacteriosis might emerge\[18\].

Intestinal dysbacteriosis may be related to the occurrence of symptoms of IBS, since *Bifidobacteria* are considered to be beneficial to health. It involves in the production of essential mucous nutrients, such as short-chain fatty acids (SCFAs) and lactic acid, by lactose fermentation. They have been shown to eliminate toxins and unnecessary substances, such as hydroxybenzene, ammonia and steroids. They may also participate in the regulation of intestinal functions, such as nutrient synthesis and absorption. *Bifidobacteria* could prevent the overgrowth of potentially pathogenic organisms by bacterial barrier or by producing antibiotic\[18\], *Enterobacteriaceae*, the main cause of endotoxin, may produce toxins such as ammonia, sulfured hydrogen. Endotoxin could temporarily impair canine gut absorptive function both in colon and in jejenum, with decreased absorption of water, glucose and electrolytes, including sodium, chloride, and potassium. When endotoxin of Gram-negative bacteria was administered intravenously in rats, the migrating myoelectric complex was replaced by spike bursts accompanied by rapid transit. These effects may contribute to the occurrence of diarrhea. Microecological modulators could prominently relieve IBS-like enteric symptoms, suggesting the close relationship between gut flora and IBS\[22,23\].

Ageing may affect the flora residing in the gut and outside of it\[19\]. In our study, we found that the intestinal microecology showed an overgrowth of *Enterobacteriaceae* with age in normal control, implying that age may interact with the gut flora. The overgrowth of *Enterobacteriaceae* may also account for the susceptibility to intestinal infection and endotoxemia in elderly people. *Bifidobacteria* have been shown to have a close relationship with human longevity. While in IBS group, age had no influence on gut flora, since there was intestinal dysbacteriosis in both younger and elder subgroups.

There was a high detection frequency of *C. perfringens* in normal control, without any apparent pathogenic effect. It was supposed that changes of gut flora in IBS might result in a relatively high detection frequency of *C. perfringens*. Therefore, further studies are needed to elucidate this phenomenon.

Anyway, microbial metabolic processes have been going on like in a black box\[24\]. Although almost all organic compounds and nutrients, fiber, digestive secretions and desquamated
epithelial cells of the host can enter into microorganismic metabolic chains and processes, little is known about this metabolic chain and process. Further studies are still needed. However, there was dysbacteriosis in IBS patients. Whether it is the effect or just cause of IBS remains unclear.

The purpose of focusing on health-related quality of life (HRQL) is to go beyond the presence and severity of symptoms of disease and to examine how patients perceive and experience these manifestations in their daily lives[29]. Briefly, HRQL concerns more about the physical, psychological and social functioning.

IBS is not a life-threaten disease. Its impacts include costs associated with diagnosis and treatment, production losses due to morbidity and pain and diarrhea, etc.[30]. With a questionnaire, Silk[31]found that IBS impacted significantly on personal relationships and working practices. Some even complained that IBS prevented them from applying for promotion or a new job. IBS patients had impaired quality of life in general health, vitality, social functioning, etc.[9,28]. According to the research of Gralnek et al.[29], IBS patients experienced significantly worse HRQL in some aspects than those with gastroesophageal reflux disease (GERD) or diabetes mellitus (DM). IBS patients had even worse bodily pain, fatigue, and social functioning when compared with dialysis-dependent end-stage renal disease patients.

In our study, we also found that IBS patients had significantly lower scores on all SF-36 scales with the exception of physical functioning, when compared with the age and sex-matched control group. Decrements in QoL were most pronounced in general health, role physical and vitality. However, there was no significant correlation between QoL and enteric symptoms, which might be due to the frequent presence of anxiety, depression, fatigue and anorexia in IBS patients[11,30]. Compared with the control, neuroticism, hypochondriasis and depression were significantly more prevalent in IBS patients attending a clinic, which would have a prominently negative influence on QoL. Hypnotherapy was effective in treating IBS, suggesting that psychological factors may play an important role in IBS. Thus the general impacts of IBS may go far beyond those of enteric symptoms, implicating that IBS is a psychosomatic disease.

ACKNOWLEDGMENTS

The authors thank Professor Lan-Juan Li, Directors Yun-Song Yu, Yun-Bo Chen, Zhong-Wen Wu, Dan-Sheng Xiao at Department of Infectious Diseases, First Affiliated Hospital of Zhejiang University for their technical supports.

REFERENCES

1 Robin CS. Estimating the importance of infection in IBS. Am J Gastroenterol 2003; 98: 238-241
2 Wang LH, Fang XC, Pan GZ. Intestinal infection and irritable bowel syndrome. Zhejiang N deke Zazhi 2002; 41: 90-93
8 Wu ZW, Li LJ, Ma WH, Yu YS, Chen YG. A new index for microbial colonization resistance of the bowel-the ratio of B/E. Zhejiang Yufang Yixue 2000; 7: 4-5
11 Xu GM. Strengthen the study on etiology of irritable bowel syndrome. Zhejiang N deke Zazhi 2003; 42: 73-74
18 Van der Waa JI. History of recognition and measurement of colonization resistance of the digestive tract as an introduction to selective gastrointestinal decontamination. Epidemiol Infect 1992; 109: 315-326
28 Hahn BA, Yan S, Strassels S. Impact of irritable bowel syndrome on quality of life and resource use in the united states and united kingdom. Digestion 1999; 60: 77-81